CYTOTOXICITY OF ACHILLEA TALAGONICA BOISS. AND A. TENUIFOLIA LAM.

Soodabeh Saeidnia¹, Ahmad R. Gohari¹*, Abbas Hadjiakhoondi², Mahmood R. Gohari³, Fahimeh M. Afrapoli⁴

¹ Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
² Department of Pharmacognosy and Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
³ Department of Epidemiology and Biostatistic, School of Public Health, Tehran University of Medical sciences, Tehran, Iran
⁴ Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran

ABSTRACT

In this study, we examined the cytotoxic activity of the ethyl acetate, methanol and aqueous methanol extracts of the aerial parts of two species of Achillea using Brine Shrimp Cytotoxicity Assay. Results showed that ethyl acetate and methanol extracts of A. talagonica and A. tenuifolia had a cytotoxic effect against the larva of A. salina. The minimum lethal concentrations of aqueous methanol extracts of both plants were more than 1000 μM. EtOAc extract of A. talagonica was the most effective extract (LC50 = 413 μM) among all fractions.

Key words: Achillea talagonica, Achillea tenuifolia, Compositae, Artemia salina

INTRODUCTION

Achillea species have been used in traditional medicine since the Trojan war (Weyerstahl et al., 1997). The genus Achillea comprises more than 100 species distributed world wide (Bremer, 1994). Many species including Achillea talagonica and A. tenuifolia are widespread in Iran mainly in north and west parts (Huber-Morath, 1989). In Persian traditional medicine, the consumption of extracts for Achillea species in the treatment of skin inflammation, wound, fever, ulcers and hemorrhoid has been reported (Zargari, 1992). Until recently, we have reported the immunosuppressive activity of the aqueous extract for A. talagonica which is endemic species of Talegan mountains (Rezaeipoor et al., 1999). Antifungal activity of A. tenuifolia against the Trycophyton schoenleinii, T. mentagrophytes and T. verucosum has been also determined (Amin et al., 2002). Antioxidant activity of the methanolic extract for later plant against linoleic acid peroxidation has been examined and more than 80% (using 40 μg of extract) peroxidation inhibition was shown (Souri et al., 2004). There is no report on cytotoxic effect of these species therefore we decided to study the brine shrimp lethality of some fractions for these Achillea plants on the larva of Artemia salina.

MATERIALS AND METHODS

Plant materials

Aerial parts of Achillea talagonica Boiss. and A. tenuifolia Lam. were collected from Talegan area and north-west of Tehran (Abiek, Karaj highway), respectively, in July 2001 (during full flowering stage) and identified by I. Mehregan and M. Kamalinejad. The voucher herbarium specimens were deposited in the Herbarium of the Faculty of Pharmacy, Mazandaran University of Medical Sciences.

Fractionation of extracts

Aerial parts (flowers, leaves and stems) of the plants (700 g for A. talagonica and 180 g for A. tenuifolia) were dried carefully and reduced to small pieces, followed by extraction three times with ethyl acetate by percolation at room temperature for 72 hours. This process was repeated on the marc with methanol and aqueous methanol (50%), successively, and then the solvents evaporated under reduced pressure to obtain the concentrated extracts. All extracts were dried under vacuum in order to give dried powder. The yields of fractionation are described in Table I.
Brine Shrimp Lethality Assay

The method described by Mongelli et al. (1996) was adopted to study the general and cytotoxic activity of the compounds (1996). Water life brand brine shrimp (A. salina) eggs were purchased from the Shilat Center (Tehran). The eggs were hatched in a flask containing 300ml artificial seawater made by dissolving distilled water. The flask was well aerated with the aid of an air pump, and kept in a water bath at 29-30 °C. A bright light was left on. The nauplii hatched within 48h. The methanol and water extracts were dissolved in normal saline. Tween-80 was used as a co-solvent for dissolving EtOAc and MeOH extracts. Different concentrations were obtained by serial dilution. Solution of each concentration (500 μl) was transferred into clean 24 wells plates via a pipette, and aerated seawater including 10-20 nauplii (500 μl) was added. A check count was performed, and the number alive noted after 24h. The mortality end point of the bioassay was determined as the absence of controlled forward motion during 30 sec of observation. The controls used were tween, seawater and a well-known cytotoxic alkaloid, berberine hydrochloride (LC50 = 26 μM). Lethality percentages were determined and LC50 calculated based on Probit Analysis with 95% of confidence interval.

RESULTS AND DISCUSSION

In the present study, the cytotoxic activity of 6 fractions (ethyl acetate, methanol and aqueous methanol (50%) extracts) for two species of Achillea (Compositae) was evaluated. Results show that EtOAc and MeOH extracts of both A. talagonica and A. tenuifolia could inactivate the forward motion of the active larva of A. salina. The minimum lethal concentrations of aqueous methanol (50%) extracts of plants are more than 1000 μM. Actually, high polarity extracts of species showed low cytotoxic activity. Biological lethality seems to be reduced by fractionation using more polar solvents (Table I).

It is possible that the activity of Achillea is associated with different constituents of terpenoids and/or methoxylated flavonoids which are frequently found in the Achillea species (Viera et al., 1997; Wollenweber et al., 1987; Falk et al., 1975; Balboul et al., 1997). Bipolar amino acid derivatives of achilleine such as choline that can be found in aqueous methanol extrat of A. talagonica (Saeidnia et al., 2004), and also glycosylated phenolic and flavonoid constituents are no probably resposible for cytotoxic activity of Achillea, because the high polar extracts were inactive.

Table I. Yiels of fractionation and LC50 of each fraction resulted from Brine Shrimp Lethality Test on Achillea talagonica and A. tenuifolia.

<table>
<thead>
<tr>
<th>Plant species</th>
<th>Solvents</th>
<th>Yields(v/v %)*</th>
<th>LC50(μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Achillea talagonica</td>
<td>Ethyl acetate</td>
<td>1.3</td>
<td>413</td>
</tr>
<tr>
<td></td>
<td>Methanol</td>
<td>3.6</td>
<td>752</td>
</tr>
<tr>
<td></td>
<td>Water-MeOH (50%)</td>
<td>6.4</td>
<td>>1000</td>
</tr>
<tr>
<td>Achillea tenuifolia</td>
<td>Ethyl acetate</td>
<td>5.1</td>
<td>534</td>
</tr>
<tr>
<td></td>
<td>Methanol</td>
<td>7.2</td>
<td>956</td>
</tr>
<tr>
<td></td>
<td>Water-MeOH (50%)</td>
<td>9.3</td>
<td>>1000</td>
</tr>
</tbody>
</table>

* based on dry weight of plant samples

ACKNOWLEDGEMENTS

Authors are very grateful to M. Kamalinejad and I. Mehregan for identification of plant samples and Research Vice Chancellore (Dr. Karimpour) of Mazandaran University of Medical Sciences for the Research Grant.

REFERENCES

(Accepted for publication January 2006)