ANTIMICROBIAL CONSTITUENTS FROM PLUCHEA WALLICHIANA DC.

Mehdi Hassan Kazmi, Sadia Khan and Saira Hameed

Department of Applied Chemistry and Chemical Technology, University of Karachi, Karachi- 75270, Pakistan

ABSTRACT

Eight compounds viz., β -amyrin (1), β -amyrin acetate (2), (+) – syringaresinol (3), ent-pimar-8-8 (14), 15-dien-19-oic acid (4), pluviatol (5), β-sitosterol (6), β -sitosterol 3-O-β-D – glucopyranoside (7), and apigenin 7-O- β-D-glucoside (8), were isolated for the first time from Pluchea wallichiana DC. and their structures were elucidated by extensive spectroscopic studies. All the isolated compounds were tested for their antimicrobial activity.

Keywords: Pluchea wallichiana, antimicrobial activity, phytochemistry

INTRODUCTION

The genus Pluchea belongs to the Family Compositae which is widely distributed in Pakistan, India, Afghanistan and Iran (Mhaskar et al., 2002; Kupchan et al., 1970). The family Compositae contains Sesquiterpene, Chlorogenic acid, lactones, orange yellow pigment, sitosterol glycoside, which are known to possess cytotoxic, antitumor and mutagenic properties (Therdore, 1908; Perry and Metzar, 1980; Jayawera, 1980). Several species have shown antifungal, antibacterial and anti inflammatory activities against number of microorganisms. The plants are traditionally used in the treatment of peptic, ulcer burns, abdominal pain and bacterial diseases. (Jafri, 1966; Ahmed and Fiza, 1988). The literature survey reveals that there are no phytochemical work has so far been carried out on Pluchea wallichiana DC. This led us to carry out phytochemical investigations on this plant.

MATERIAL AND METHODS

Plant Material:

The whole plant of Pluchea wallichiana DC. was collected by botanical authority from Karachi region in the month of July to August and identified by Dr. Surraya Khatoon, Plant Taxonomist, Department of Botany University of Karachi, Pakistan, where a voucher specimen (1037/KUh) has been deposited.

Isolation:

The shade dried whole plants of P. wallichiana (20Kg) was extracted with MeOH (3x50L) at room temperature. The combined methanolic extract was evaporated under reduced pressure to obtain a thick gummy mass (700gm). It was suspended in water and successively extracted with n-hexane, ethylacetate and n-butanol. The chloroform soluble fraction was subjected to column chromatography over silica gel eluting with n-hexane-chloroform, chloroform and chloroform- methanol in increasing order of polarity to obtain six major fractions C6-C6. The fraction C6 obtained from n-hexane-chloroform (6.0: 3.0) gave two spots on TLC which on preparative TLC in the same solvent system gave β -amyrrine (1) (30 mg) and β -amyrine acetate (2) (20 mg) respectively. The fraction C5 obtained from the n-hexane-chloroform (5.0 : 5.0) was rechromatographed over silica gel with the same solvent and final purification was achieved through PTLC using n-hexane-chloroform (4.5 : 5.5) as solvent system provided (+)–syringaresinol (3) (20 mg). The fraction C4 obtained from n-hexane-chloroform (4.0 : 6.0) were combined and rechromatographed over silica gel eluting with same solvent system. The final purification was achieved through PTLC using n-hexane-chloroform (3.0 : 7.0) as eluent to afford ent-pimar-8-8(14),15-dien-19-oic acid (4) (20 mg). The fraction C3 obtained from n-hexane-chloroform (2.0 : 8.0) gave two spots on TLC which on PTLC with the same solvent system gave pluviatol (5) (25 mg) and β -sitosterol (6) (30 mg). The fraction C2 obtained from chloroform- methanol (9.8 : 0.2) gave one major spot on TLC which in PTLC in the solvent system chloroform- methanol (9.5:0.5) gave β -sitosterol 3-O- β-D-glucopyranoside (7) (25 mg). The fraction C1 obtained from chloroform- methanol (9.5 : 0.5) were combined and rechromatographed over silica gel eluting with the solvent system (9.4 : 0.6) and final purification from PTLC using chloroform- methanol (9.2 : 0.8) as developing solvent yielded apigenin 7-O- β-D-glucopranoside (8) (25 mg). All the compounds were identified through comparison of physical and spectral data with those reported in literature.
β-Amyrin (1)

Crystallization from ethanol (30 mg), m.P 197-198°C; [α]D25° +100° (c = 0.21, CHCl3). IR (KBr) νmax cm⁻¹: 3510 (hydroxyl), 3055, 1635 and 820. ¹H-NMR (CDCl₃, 500 MHz): δ 5.11 (1H, m, H-12), 3.20 (1H, dd, J = 10.0, 4.5 Hz, H-3), 1.02, 1.01, 1.08, 0.96, 0.93, 0.88, 0.85 and 0.80 (3H, each s, Me). HREIMS m/z: 426.3825 (calcd. for C₂₉H₅₆O, 426.3861). The physical and spectral data showed complete agreement with those reported in the literature (Budzi-kiewicz et al. 1963; Shamma et al., 1962).

β-Amyrin acetate (2)

Crystallization from methanol (20 mg), m.P 244-245°C; [α]D25°: +81.4° (c = 0.20, CHCl3). IR (KBr) νmax cm⁻¹: 3055, 1710, 1660, 1382, 1180 and 810 cm⁻¹. ¹H-NMR (CDCl₃, 500 MHz): δ 5.10 (1H, m, H-12), 4.05 (1H, dd, J = 10.0, 4.5 Hz, H-3), 2.13 (3H, s, OAc), 1.00, 1.07, 0.98, 0.96 (3H, each s, Me), 0.90 (6H, s, H-29 and H-30), 0.86 and 0.81 (3H, each s, Me). HREIMS m/z: 468.3931 (calcd. for C₃₂H₅₂O₂, 468.3916). The physical and spectral data corresponded to the reported values (Chow and Quon, 1970).

(±)-Syringaresinol (3)

Crystallization from methanol (20 mg), m.P 179-180°C; [α]D20°: +6.9 (C 0.02, CHCl3). IR (KBr) νmax cm⁻¹: 3428, 1614, 1520. ¹H-NMR (CDCl₃, 500 MHz): δ 3.11 (1H, m, H-1), 4.73 (1H, d, J = 4.5 Hz, H-2), 3.89 (1H, m, H-4), 4.30 (1H, dd, J = 7.0, 9.0 Hz, H-4), 3.12 (1H, m, H-5), 4.73 (1H, d, J = 4.5 Hz, H-6), 3.89 (1H, m, H-8), 4.30 (1H, dd, J = 7.0, 9.0 Hz, H-8), 6.58-6.60 (4H, H-2’,6’,2”’,6”’), 3.90 (3H, s, OCH₃). HREIMS m/z: 418.4269 (calcd. for C₁₉H₂₂O₄, 418.1627). The physical and spectral data were in agreement with those reported in literature (Deyama et al., 1987; Macrae and Towers, 1985; Tanaka et al., 1989).

ent-Pimara-8(14), 15-dien-19-oic acid (4)

Crystallization from methanol (30 mg), m.P 165-166°C; IR νmax (KBr cm⁻¹): 3400, 1690, 1460. ¹H-NMR (CDCl₃, 300 MHz): δ 0.66 (3H, s, H-20), 1.01 (3H, s, H-17), 1.23 (3H, s, H-18), 4.91 (1H, dd, J = 2.1, 11.7 Hz, H-16a), 4.96 (1H, dd, J = 1.8, 5.1 Hz, H-16b), 5.16 (1H, s, H-14), 5.71 (1H, dd, J = 10.5, 17.1 Hz, H-15). HREIMS m/z: 302.4391 (calcd. for C₁₉H₂₂O₂, 302.4421). The physical and spectral data showed complete agreement with those reported in the literature (Sy and Brown, 1998).

Pluviatilol (5)

Crystallization with benzene and petether (25 mg), m.P 161-163°C; [α]D20° +79.8 (C 0.16 MeOH). ¹H-NMR (CDCl₃, 500 MHz): δ 2.91 (1H, m, H-1), 4.42 (1H, d, J = 7.5 Hz, H-2), 3.32 (1H, m, H-4), 3.85 (1H, m, H-4), 3.32 (1H, m, H-5), 4.86 (1H, d, J = 6.0 Hz, H-6), 3.85 (1H, dd, J = 6.5, 9.5 Hz, H-8), 4.13 (1H, dd, J = 1.0, 9.5 Hz, H-8), 6.81-6.89 (6H, H-2’,5’,6’,2”’,5”’,6”’), 5.97, (2H, s, OCH₃), 3.91 (3H, s, OCH₃). HREIMS m/z: 356.3740 (calcd. for C₁₉H₂₉O₄, 356.1259). The physical and spectral data corresponded to the reported values (Corrie et al., 1970; Banerji and Pal, 1982).

β-Sitosterol (6)

Crystallization from acetone (30 mg), m.P 135°C; [α]D25°: +35.5 (c = 0.22, CHCl₃). IR (KBr) νmax: 3446, 3050, 1650 and 815 cm⁻¹. ¹H-NMR (CDCl₃, 400 MHz): δ: 5.11 (1H, m, H-6), 3.36 (1H, m, H-3), 1.01 (3H, s, Me-19), 0.92 (3H, d, J = 6.2 Hz, Me-21), 0.84 (3H, t, J = 7.0 Hz, Me-29), 0.83 (3H, d, J = 6.5 Hz, Me-26), 0.81 (3H, d, J = 6.5 Hz, Me-27), 0.68 (3H, s, Me-18). HREIMS: m/z: 414.3845 (calcd. for C₂₃H₄₅O, 414.3861). The physical and spectral data showed complete resemblance with those reported in the literature (Holland et al., 1978; Rubintein et al., 1976).
ANTIMICROBIAL CONSTITUENTS FROM *PLUCHEA WALlichiana*
β-Sitosterol 3-O-β-D-glucopyranoside (7)

Crystallization from methanol (25 mg), m.P 279-280 °C; [α]D^25^-14.5 (c = 0.3, MeOH) IR (KBr) νmax: 3452, 3044, 1646, 1618, 1595-1550 cm\(^{-1}\). \(^1\)H-NMR (CDCl\(_3\), 300 MHz) δ: 5.33 (1H, d, J = 7.2 Hz, H-1'), 5.12 (1H, br d, J = 5.4 Hz, H-6), 3.85 (1H, m, H-3), 3.82-4.42 (m, Glc-H), 1.01 (3H, s, Me-19), 0.92 (3H, d, J = 6.2 Hz, Me-21), 0.84 (3H, t, J = 7.0 Hz, Me-29), 0.83 (3H, d, J = 6.5 Hz, Me-26), 0.81 (3H, d, J = 6.5 Hz, Me-27), 0.68 (3H, s, Me-18). HRFABMS: m/z 576.4386 (calcd for C\(_{25}\)H\(_{37}\)O\(_{6}\) 576.43897). The physical and spectral data corresponded to the reported values. (Iribarren et al., 1983; Wyllie et al., 1976).

Apigenine 7-O-β-D-glucoside (8)

Amorphous powder (25 mg), [α]D^25^-64.0 (c = 0.14, MeOH). UV λ \(\text{max} \) (log ε) (MeOH) nm: 6.9 (4.42) and 269 (3.03). IR (KBr) νmax cm\(^{-1}\): 3370 and 1660. \(^1\)H-NMR (CD\(_{3}\)OD, 400 MHz) δ: 7.86 (2H, d, J = 9.0 Hz, H-2' and H-6'), 6.92 (2H, d, J = 9.0 Hz, H-3' and H-5'), 6.75 (1H, d, J = 3.0 Hz, H-8), 6.68 (1H, s, H-3), 6.43 (1H, d, J = 3.0 Hz, H-6), 5.04 (1H, d, J = 7.5Hz, H-1''), 4.52 (1H, m, H-4''), 3.84 (1H, m, H-2''), 3.78 (2H, m, H-6''), 3.59 (1H, m, H-3'') and 3.38 (1H, m, H-5''). HRFABMS (+ve) [M+H]^+ m/z: 433.1135 (calcd. for C\(_{21}\)H\(_{30}\)O\(_{6}\), 433.1125). The physical and spectral data showed complete resemblance with those reported in literature (Sadikum et al., 1980; Redaelli et al., 1980).

Antimicrobial Assay:

The antibacterial and antifungal were determined by agar diffusion method proposed by (Jaffer et al., 1988), one loop full of 24hr- old culture of selected bacteria Spread on the surface of Mueller Hinton Agar Plates wells were drug in the medium with the help of sterile borer. A stock solution of extract 2mg/ml was prepared in DMSO and dilution of the stock solution containing hundred microlitre of each dilution was added to their respective wells and after 24hr-growth inhibition of bacteria was observed.

Table 1. Antibacterial and antifungal activity of compounds 1-8 from Pluche wallichiana.

<table>
<thead>
<tr>
<th>Microorganism</th>
<th>Compounds (1-8)</th>
<th>Zone of inhibition (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gram positive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacillus subtilis</td>
<td>1 2 3 4 5 6 7 8</td>
<td></td>
</tr>
<tr>
<td>Shigelta flenneri</td>
<td>15 20 22 15 15 25 25</td>
<td></td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>5 20 16 12 15 18 20</td>
<td></td>
</tr>
<tr>
<td>Streptococcus pyogens</td>
<td>12 5 12 10 10 20 20 15</td>
<td></td>
</tr>
<tr>
<td>Streptococcus agalactae</td>
<td>12 0 20 13 10 18 20 20</td>
<td></td>
</tr>
<tr>
<td>Gram negative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>15 18 20 18 7 5 22 15</td>
<td></td>
</tr>
<tr>
<td>Pseudomonos aeruginosa</td>
<td>12 0 20 17 12 3 18 0</td>
<td></td>
</tr>
<tr>
<td>Salmonella paratyp</td>
<td>10 15 25 15 12 4 16 16</td>
<td></td>
</tr>
<tr>
<td>Shigella byd</td>
<td>18 16 15 10 10 6 15 14</td>
<td></td>
</tr>
<tr>
<td>Salmonella typhi</td>
<td>20 12 12 15 8 2 15 12</td>
<td></td>
</tr>
<tr>
<td>Fungi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspergillus nigar</td>
<td>2 0 58 25 7 12 15 16</td>
<td></td>
</tr>
<tr>
<td>A. fumigatus</td>
<td>0 10 30 12 5 10 20 20</td>
<td></td>
</tr>
<tr>
<td>A. flavus</td>
<td>5 12 20 17 0 10 17 25</td>
<td></td>
</tr>
<tr>
<td>Alternaria solani</td>
<td>7 14 25 15 5 5 12 17</td>
<td></td>
</tr>
</tbody>
</table>
RESULTS AND DISCUSSION

The methanolic extract was fractionated into n-hexane, chloroform, ethyl acetate, n-butanol and water soluble fractions. Of these chloroform fraction has been studied in the present investigations. A series of column chromatographic techniques resulted in isolation of eight known compounds reported for the first time from this species. These could be identified as β-amyrin (1), β-amyrin acetate (2), (+) – syringaresinol (3), ent-pimara-8(14), 15-diene-19-oic acid (4), pluviatol (5), β-sitosterol (6), β-sitosterol 3-O–β-D–glucopyranoside (7), and apigenin 7-O–β-D-glucoside (8). The isolated compounds were tested for their antimicrobial activity (Table 1). The compounds 3, 4, 7 and 8 showed significant antimicrobial activity against Bacillus subtilis, Shigella fleinneri, Staphylococcus aureus, Streptococcus pyogenes, Streptococcus agalactiae. Other compounds showed weak to moderate activity.

REFERENCES

(Accepted for publication July 2012)